3.1190 \(\int \frac {(d+e x^2)^{3/2} (a+b \tan ^{-1}(c x))}{x^4} \, dx\)

Optimal. Leaf size=88 \[ b \text {Int}\left (\frac {\tan ^{-1}(c x) \left (d+e x^2\right )^{3/2}}{x^4},x\right )+a e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )-\frac {a e \sqrt {d+e x^2}}{x}-\frac {a \left (d+e x^2\right )^{3/2}}{3 x^3} \]

[Out]

-1/3*a*(e*x^2+d)^(3/2)/x^3+a*e^(3/2)*arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))-a*e*(e*x^2+d)^(1/2)/x+b*Unintegrable((
e*x^2+d)^(3/2)*arctan(c*x)/x^4,x)

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {\left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{x^4} \, dx \]

Verification is Not applicable to the result.

[In]

Int[((d + e*x^2)^(3/2)*(a + b*ArcTan[c*x]))/x^4,x]

[Out]

-((a*e*Sqrt[d + e*x^2])/x) - (a*(d + e*x^2)^(3/2))/(3*x^3) + a*e^(3/2)*ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]] +
b*Defer[Int][((d + e*x^2)^(3/2)*ArcTan[c*x])/x^4, x]

Rubi steps

\begin {align*} \int \frac {\left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{x^4} \, dx &=a \int \frac {\left (d+e x^2\right )^{3/2}}{x^4} \, dx+b \int \frac {\left (d+e x^2\right )^{3/2} \tan ^{-1}(c x)}{x^4} \, dx\\ &=-\frac {a \left (d+e x^2\right )^{3/2}}{3 x^3}+b \int \frac {\left (d+e x^2\right )^{3/2} \tan ^{-1}(c x)}{x^4} \, dx+(a e) \int \frac {\sqrt {d+e x^2}}{x^2} \, dx\\ &=-\frac {a e \sqrt {d+e x^2}}{x}-\frac {a \left (d+e x^2\right )^{3/2}}{3 x^3}+b \int \frac {\left (d+e x^2\right )^{3/2} \tan ^{-1}(c x)}{x^4} \, dx+\left (a e^2\right ) \int \frac {1}{\sqrt {d+e x^2}} \, dx\\ &=-\frac {a e \sqrt {d+e x^2}}{x}-\frac {a \left (d+e x^2\right )^{3/2}}{3 x^3}+b \int \frac {\left (d+e x^2\right )^{3/2} \tan ^{-1}(c x)}{x^4} \, dx+\left (a e^2\right ) \operatorname {Subst}\left (\int \frac {1}{1-e x^2} \, dx,x,\frac {x}{\sqrt {d+e x^2}}\right )\\ &=-\frac {a e \sqrt {d+e x^2}}{x}-\frac {a \left (d+e x^2\right )^{3/2}}{3 x^3}+a e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )+b \int \frac {\left (d+e x^2\right )^{3/2} \tan ^{-1}(c x)}{x^4} \, dx\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 31.66, size = 0, normalized size = 0.00 \[ \int \frac {\left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{x^4} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[((d + e*x^2)^(3/2)*(a + b*ArcTan[c*x]))/x^4,x]

[Out]

Integrate[((d + e*x^2)^(3/2)*(a + b*ArcTan[c*x]))/x^4, x]

________________________________________________________________________________________

fricas [A]  time = 0.50, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (a e x^{2} + a d + {\left (b e x^{2} + b d\right )} \arctan \left (c x\right )\right )} \sqrt {e x^{2} + d}}{x^{4}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(3/2)*(a+b*arctan(c*x))/x^4,x, algorithm="fricas")

[Out]

integral((a*e*x^2 + a*d + (b*e*x^2 + b*d)*arctan(c*x))*sqrt(e*x^2 + d)/x^4, x)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(3/2)*(a+b*arctan(c*x))/x^4,x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 1.09, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \,x^{2}+d \right )^{\frac {3}{2}} \left (a +b \arctan \left (c x \right )\right )}{x^{4}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^(3/2)*(a+b*arctan(c*x))/x^4,x)

[Out]

int((e*x^2+d)^(3/2)*(a+b*arctan(c*x))/x^4,x)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(3/2)*(a+b*arctan(c*x))/x^4,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e-c^2*d>0)', see `assume?` for
 more details)Is e-c^2*d positive or negative?

________________________________________________________________________________________

mupad [A]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\left (a+b\,\mathrm {atan}\left (c\,x\right )\right )\,{\left (e\,x^2+d\right )}^{3/2}}{x^4} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*atan(c*x))*(d + e*x^2)^(3/2))/x^4,x)

[Out]

int(((a + b*atan(c*x))*(d + e*x^2)^(3/2))/x^4, x)

________________________________________________________________________________________

sympy [A]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \operatorname {atan}{\left (c x \right )}\right ) \left (d + e x^{2}\right )^{\frac {3}{2}}}{x^{4}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**(3/2)*(a+b*atan(c*x))/x**4,x)

[Out]

Integral((a + b*atan(c*x))*(d + e*x**2)**(3/2)/x**4, x)

________________________________________________________________________________________